技术逐步成熟之后,落地的进展最先与国家标准建立有关。“十三五”以来,大量虹膜识别相关的国家和行业标准开始发布或立项。目前已发布的标准,内容指向包括图像技术要求、数据交换格式、算法测评方法、程序接口规范等方面;对于金融采集设备通用技术要求方面正在报批过程中。
实际上目前政府级别单位掌握的虹膜数据远比想象中庞大。马力在前述论坛中介绍,目前全球通过指纹、人脸、虹膜技术已面向十亿以上人口做过采集,而虹膜在全球到目前为止有不到20亿的采集数据在政府手中。至于目前在生活中落地较慢的原因,主要与信息采集难度和终端应用有关。由于虹膜辨识技术早期的整体技术尚不够成熟、建置成本过高,据千讯咨询发布的的《中国金融市场前景调查分析报告》显示,因此只有如金融机构这类最在意安全性及隐私的地方采用居多。这几年随着各类型生物辨识技术成本下降,全球都更重视以此带来的价值。
虹膜辨识与人脸辨识的确是最常被拿来做对比,因为两种技术都属于不需要像指纹辨识一样碰触感测设备的技术。但针对国内政府近几年想在众城市推行的安防概念来说,其推行难度比人脸辨识大许多。虽然两者都是针对拍回的图像进行辨识,但在相对远的距离之下,拍眼睛及人脸所传回的图片大小、清晰度等都会有较大落差,容易造成虹膜辨识所需要的生物特征值不足问题。
若从移动终端的应用角度分析,则与终端本身的软硬件配套有关。手机就是最直接的场景,如面部识别之所以在今年开始大规模采用,很大程度来自于去年底,苹果推出的iphone X开始大规模运用到面部识别技术。此后软件配套不断丰富,才有了更多使用场景落地的可能。
当然这是消费终端,在许多海外国家,其实早已开始虹膜识别的场景应用。虹膜识别整体增长速度非常快,每年复合增长率可以达到20%以上。除了常规2G(政府)方面落地较快的安检通关、反恐等领域,针对特殊人群的识别、在海外银行的落地也在快速推进。