全球互联网用户数已经突破了41亿,全球独立移动设备用户渗透率达到了总人口的67%。这些海量的数据,为训练人工智能提供了原材料。所谓训练,是指使用统计模型来进行数据的概率推算,包括图像、文本或者语音。通过把这些模型暴露于大数据中,使之得到不断优化。有了大数据的支持,深度学习算法输出结果,会随着数据处理量的增大而更加准确。
计算机的发展为人类带来了便捷性,随着深度学习和机器学习的快速应用,据千讯咨询发布的《中国人工智能市场前景调查分析报告》显示,能够使用人工智能解决问题。用小范围的数据解决大范围的宏观问题。事实上,以人类小孩而言,其大脑能够在提供有限数据量的基础上了解事物特征,到目前为止,这背后的机制依然并不清楚。
这也就形成了“类脑计算”,即仿真、模拟和学习借鉴人脑的神经系统结构和信息处理过程,构建出具有学习能力的超低功耗新型计算系统。这不仅要从结构上模仿大脑,还要从神经元和突触的模型上模仿大脑。与深度学习神经网络不具有动态和精细的时域信息的特征相比,类脑计算在相关方面表现出巨大的优势。
另一个人工智能的方向则是更好地发挥人脑的潜力。“没什么比‘脑科学+人工智能’更重要了。”沈向洋表示,根据统计数据,20%-30%的人类在一生中会或多或少经历大脑功能的紊乱,无论是因为老龄化加剧脑老化,或是曾经受到抑郁症的影响。但是通过对脑神经科学的研究,结合人工智能,能够更好地理解人类大脑的运行机制,从而更好地使用AI弥补人类大脑的疾病治疗。这不仅对教育、疾病治疗极为重要,对未来人工智能商业化的潜力而言也是非常巨大的。